
Building, Using, Sharing and Reusing Environment Concept Models

Christopher Chadbourne
VisiTech, Ltd.

3107 North 18th Street
Arlington, Virginia 22201

(703) 391-6264
chadbourne@visitech.com

Douglas Clark
Analysis and Technology, Inc.
2341 Jefferson Davis Highway

Arlington, Virginia 2202
(703) 418-8667

dclark@atinc.com

Keywords:
Simulation Implementation, Synthetic Environment, Unified Modeling Language

ABSTRACT: As Federations becoming larger and more complex, additional procedures and tools are being developed
to help domain experts specify authoritative representations. This paper summarizes experience and lessons learned in
developing a new tool needed by synthetic natural environment providers and simulation system integrators.

The Environment Concept Model (ECM) is an object-oriented documentation technique. The technique is tailored for
system engineers who must deliver a consistent synthetic environment representation, on time and within budget. The
ECM documents the assumptions, features and limitations of environment data, effects and impacts, whether they are
implemented as a single Federate or embedded within each Federate of a distributed Federation. The ECM leverages
modern object-oriented design methodology, enables collaborative development of synthetic environment
representations, and supports reuse using round trip software engineering principles.

Using the Unified Modeling Language as the reference modeling language, an example ECM is used to describe which
features of object-oriented design languages are needed to develop an ECM. The paper further describes specific
modeling tool features that support a full-featured ECM-building capability, to build ECMs that can be saved in
repositories and reused to promote interoperability and reduce development time.

The paper describes how the ECM use case view records the objectives of the simulation, identifies the participants,
and records other information which helps describe the context of the simulation application. It then describes the
inferred environment view, the environment representation that is the sum of explicit and implicit environment-related
requirements exposed by the use case. The paper then describes the implemented environment view, the representation
that accounts for the level of "environment awareness" of simulation objects, the use of legacy and embedded
environment data and software, and accommodations to the overall Federation development schedule and budget.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Building, using, Sharing and Reusing Environment Concept Models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
VisiTech Ltd,3107 North 18th Street,Arlington,VA,22201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. Introduction

Based on the common need to create the basis for a
unified environment representation, several major
acquisition programs have cooperated to jointly
develop a plan of action. The Maritime Virtual
Environment Data Specification (MARVEDS)
Initiative's objective is to develop the data
specifications to enable a virtual prototype (VP) to
interact with a maritime virtual environment. The goal
is a verified, validated synthetic environment usable by
multiple VPs throughout their lifecycle.

The ISD M&S Pilot Program is an Advanced
Distributed Simulation Technology development
program being conducted by the Program Executive
Office for Theater Surface Combatants (PEO TSC).
"The goal of the Integrated Ship Defense Modeling &
Simulation Pilot Program is to develop and
demonstrate a comprehensive modeling and simulation
capability in support of the design and evaluation of
components and systems directed towards phases of the
ship defense mission, i.e., detect, control and engage.
To this end, a comprehensive program plan was
prepared in 1996 that details an approach to federating
existing simulations in compliance with the High Level
Architecture (HLA) to support PEO TSC system
acquisition decisions." (Ref 1)

As Federations becoming larger and more complex,
additional procedures and tools are being developed to
help domain experts specify authoritative
representations. In 1998 the authors, as members of a
MARVEDS technical team, worked with the ISD M&S
Pilot Program to develop a consistent synthetic
environment representation for the ISD Phase 1
Federation (Ref 2). In the paper that documented our
1998 efforts we introduced the Environment Concept
Model (ECM) document and generally described its
intended features. This paper offers a more complete
description of the ECM structure, and summarizes
experience and lessons learned in developing the first
instantiation of an ECM

2. Environment Concept Model
Foundations

2.1 Why an Environment Concept Model?

Because environment representation, object models
and object behaviors are so clearly linked, valid virtual
prototype behaviors require consistent environment
representations. Colloquially expressed, a consistent
environment representation means that "everyone plays
on the same day". More rigorously, consistent
synthetic natural environments provide representations
that are valid to a chosen resolution, and are spatially,
temporally and spectrally continuous.

Responsive simulations must generate the prototype
behaviors of interest, and they must be available in a
timely fashion, for an investment that the program or
project can afford. "Just enough" environment
representation is matched to the needed behaviors,
having been implemented within the constraints of the
overall schedule and budget.

To achieve simulations where "everyone plays on the
same day" with "just enough" environment
representation, we make use of three important tools:
the Environment Reference Framework, the
Environment Reference Implementation Process, and
the ECM.

Figure 1, the Environment Reference Framework, now
under consideration by the Simulation Interoperability
Standards Organization as a standard, provides a
common basis for discussing environment
representation in simulation. (The Environment
Reference Framework is not a prescribed architecture,
or a prescribed logical or physical simulation
implementation.) Environment representations are
created from combinations of environment data,
effects/internal dynamics/impact calculations, and,
possibly, heuristics. In whatever form, the
representations must be combined with environment-
aware military systems models. The resulting
behaviors provide the simulation's value added output.
Thus there is a direct, traceable relationship between
the data and calculations that create the environment
representation and the military systems behaviors.

Yes

No

Approved Changes

Environment Concept Model

Use Case:
• Scenario
• Object Representations
• Range Instrumentation

Inferred Environment

Implemented Environment:
• Data Repositories
• Effects.Impacts Models
• Range Parameters

Review
Analysis

Objectives

Recommended
Environment

Sources

Objectives
Satisfied?

Representation
Production/Tailoring

Simulation Implementers
Representation

Providers

Recommended
Changes to

 Representations/Scenario

Recommended
Environment

Services

Choose
Environment

Services

Domain
Identification

Survey for
Representation

Reuse

Figure 2. Environment Reference Implementation Process

Figure 2, the Environment Reference Implementation
Process, was developed specifically to support a
program simulation system engineer in his effort to
deliver responsive simulation capability on time and
within budget. The process develops a recommended
set of environment data, calculation models and
heuristics that constitute “just enough” consistent
environment representation to produce valid simulation
results.

The process begins by reviewing the underlying
operational scenario, and the participants (both real and
modeled). If the simulation will be used in support of
test range activities, then range instrumentation is
reviewed as well. This initial review defines the
application use case. Based on this review we can
develop a unified environment representation (the
inferred environment) that is the logical outgrowth of
the objective-based use case. If necessary, we can then
make recommendations for changes to scenarios or
military systems models, if there is no other cost-
effective way to satisfy environment representation
requirements.

Environment Representation

Behaviors

 - Transit

 - Resupply

 - Attack

 - Search

 - Detect

 - Track

 - Fire

 - ...

Data
 - Terrain

 - Atmosphere
 - Ocean

 - Space Weapons &
CountermeasuresImpacts Calculations

 - Wake
 - Craters
 - ...

Effects Calculations
 - noise
 - propagation
 - ...

Internal Dynamics

Military System Models

Passive Sensors

Active Sensors

Units/Platforms

Figure 1. Environment Reference Framework

The process continues by selecting the set of
environment data, models and, if applicable, range
measurement parameters that constitute the needed
environment representation, specific to the simulation
requirements at hand (the implemented view).

The environment selection process is accompanied by a
documentation capability, the ECM, that complements
sound engineering judgement with standards-based
software modeling languages and tools. The ECM
describes a unified environment representation
(wherever it may occur) and makes it as accessible as
every other component of the simulation
implementation.

For us, the key point is that the ECM is the outgrowth
of a collaborative process that coordinates the effort of
simulation implementers and environment
representation providers. Other reference frameworks
might be appropriate. We have found, however, that
any documentation approach should recognize the need
for:

a. An incrementally constructed documentation
approach that delivers partial products
throughout the simulation implementation
process

b. A use case description providing vital context
information for the environment representation

c An environment representation description
reflecting the use case needs, without
compromise

d. A description of the environment representation
as it is implemented in the simulation.

2.2 The Environment Concept Model Defined

The ECM is a unified description of the synthetic
natural environment for a simulation application. The
heart of the ECM is an object oriented analysis and
design model, implemented in a standards-based object
oriented analysis and design language. The object
oriented model may be augmented by referenced
electronic documents that amplify aspects of the
representation. The object model may also be
augmented by referenced files containing specific
formatted queries and download requests from
environment information repositories.

The core object oriented model describes
computational processes and process interactions as
well as static data structures. The purpose of the core
object model is to unambiguously describe the
environment representation to be used in the simulation

application. The augmenting electronic documents and
files may consist of reports, technical literature,
briefings, test condition matrices, or other information
that clarifies the reasoning behind selections of
particular parameters or algorithms.

Because the ECM is not intended to be
implementation-dependant, the ECM and its augments
do not contain actual formatted environment data,
source/executable code, or heuristics. However, in
practical use, we have found that it is important to
document allocations of environment representation
(specific parameter files or calculation processes) to
components of the simulation system. Further, by
specifying a standards-based language for the object-
oriented model, we anticipate greater future use of
automated data schema and code generation, and code
parsing to reverse engineer legacy code. Thus, the
boundaries between ECM documentation and
simulation content may blur as software engineering
practice smoothes the evolution from design to runtime
execution.

3. Developing and Using Environment
Concept Models

3.1 Object Oriented Modeling Described

Object oriented modeling describes the physical world
in an intuitive representation that can be directly
replicated in software. Physical entities (objects) are
described by their characteristics (attributes) and their
behaviors (operations). The entities may be grouped
into sets (classes) in heirarchies (subclasses and
superclasses). The physical entities may exchange
information (messages). Sometimes an object with its
attributes and operations may represent an example of
a category of physical entities (a stereotype or a type).
Numbers of non-heirarchically related objects may be
associated together (packages). When implemented in
software, modules of code (components) may be
installed (deployed) on one or more processing hosts.

Object oriented design languages use a descriptive
notation that attempts to unambiguously define the
emerging representation. Often, languages are both
graphical and textual, with diagrams and terms having
an agreed-upon grammar and syntax. Different types
of symbols and notations are placed in different types
of diagrams to describe (expose) the design from
different perspectives (views).

Modern object oriented design tools to create
sufficiently complete and unambiguous descriptions
that the resulting files can be input to code generators

to create database designs or source code.
Increasingly, design tools have parsers that are able to
reverse engineer source code into design diagrams
(round trip engineering).

We suggest two texts that will amplify this skeletal
description. The first, Fowler's UML Distilled, (Ref 2)
provides an overview of object oriented analysis and
design from several viewpoints as well as introducing
the reader to the Unified Modeling Language. The
second, Booch/Rumbaugh/Jacobson's The Unified
Modeling Language User Guide, (Ref 3) is a more
focused, detailed explanation of the applications and
conventions of the Unified Modeling Language
(UML).

3.2 A Note about Object Oriented Modeling Tools

Building and using ECMs doesn't require using a
particular object oriented language, or a particular
documentation tool. However, whatever language is
used, one should satisfy oneself that it can represent the
application's environment representation in a way that
communicates effectively with the entire simulation
team. Similarly, one may choose from any number of
documentation tools. For us, a good tool is tolerably
easy to use, allows one to reuse all or part of ones
previously developed ECMs, and integrates into the
team's round trip engineering process. We use the
Unified Modeling Language, developed by Rumbaugh,
Booch and Jacobson and now being maintained by the
Object Management Group.

 To document our models, we have used Rational
Corporation's Rational Rose. (Over a dozen vendors
now offer UML modeling tools with varying features,
in a range of prices and licensing conditions.) Our
experience shows that a suitable tool should have, at
minimum, the following features:

a. Follows the notation conventions established for
the modeling language

b. Documents requirements and stakeholders
explicitly, in addition to the environment
representation schema

c. Documents dynamic (message passing,
changing participants, etc.) as well as static
(stakeholders, activities, physical objects to be
simulated) aspects of the simulation scenario.

d. Provides a features for representing different
views of the same simulation

e. Provides a capability to link external files with
elements contained within the core object
model file(s).

f. Provides graphical views and tools for creating
and editing object model views

g. Provides file export and printing of selected
object model views

In addition, a preferred modeling tool has the following
additional features:

a. Exports and imports models views to and from a
commonly accessible model repository

b. Generates data schemas, interface definitions,
structured queries, and code structures from the
object model

c. Parses database schemas or source code into
object model content

d. Provides HTML file output of selected object
model views

e. Provides automated modeling syntax checking,
to avoid notation errors

Above all, good models create insight and
understanding. That's the goal of the ECM, and the
selected modeling tool should facilitate that goal.

3.3 Building and Using the Use Case

In UML, the use case view is used to show the
intended behavior of the system to be implemented.
Figure 3 shows the ISD Phase 1 Use Case view, as
represented in Rational Corporation's Rational Rose
modeling tool. We develop Use Case Diagrams to
foster a common understanding between the federation
system engineer, the federation developer, the
environment system engineer, and the environment
domain experts about the system being simulated. The
Use Case Diagram explicitly describes the participants
in the overall project (the actors), the processes to be
simulated (the simulation activities), and other relevant
project efforts that are not being simulated (the non-
simulation activities)

The Use Case Diagram records simulation activities
because the activities answer the question "what
activities are being modeled/simulated?" The
simulation activities are groups of simulation events
packaged as a short description. Every Use Case
Diagram has a simulation activity entitled "Log
simulation data" as a reminder that logging function
must be explicitly considered in developing synthetic
environment representations.

The simulation activity descriptions have associated
lists of objects. These objects are the participants in
the simulation: ships, aircraft, battalions, command
structures, etc. Taken as a whole, the objects
associated with the simulation activities correspond to
the order of battle. The simulation activities and their
associated objects are the basis for determining the size
and scope of the battlespace. The Class Diagram is
used to describe the participant objects comprising the
scenario to be simulated. We capture limited
information about the object as a way of determining
which environment parameters affect object behaviors
in the scenario. The Class Diagrams answer the
question "What participant characteristics are affected
by environment?"

The Sequence Diagram is used to represent the flow of
activities over time to answer the question "How long
is the simulation period?" The Sequence Diagram helps
to scope environment representation requirements by
identifying the information exchanged between objects,
and an order for exchanging that information.
Generally, we only construct diagrams using objects
that are environment-sensitive, and we only identify
environment-sensitive information exchanges.

However, the syntax of design languages (including
UML), sometimes need a little help in communicating
the essence of a tactical situation. Context Diagrams
are simple schematics of a scenario, not created in a
UML notation. The Context Diagram often looks like
an annotated map or sensor display and is a shorthand
means of communicating with operational domain
experts accustomed to tactical or command system
screen displays.

One may be tempted to use a Context Diagram as the
only means of capturing the context of a simulation. If
the scenario is simple; and the simulation is simple;
and there is no intent to enhance the simulation; and no
intent to reuse the simulation; then a Context Diagram

Figure 3. ISD Phase 1 Federation Use Case View

is all that's needed. But for the remaining 90% of
simulation applications, we think Use Case, Class and
Sequence Diagrams are a wise investment.

3.4 Building and Using the Inferred Environment
View

There are actually two distinct environment
representations under development in each project.
The first is the environment representation inferred by
the characteristics of the use case. By "inferred", we
mean the representation that is a logical extension of
the (a) level of fidelity appropriate to the purpose of the
use case, (b) the domains and bandwidths in which the
participating objects operate, and (c) the space and time
described in the scenario. The second is the
environment representation implemented for the
simulation. The implemented environment describes
the actual parameters, data sets and models
implemented in the simulation.

The general approach to building an inferred view is to
begin, if possible, with an existing environment
representation structure, and then to edit and enhance
that structure to satisfy the use case.

When building a first ECM, or for unique applications,
one may wish to develop one's own stereotype class
structure. For broadly based representations, we
recommend a structure with superclasses for terrain,
ocean, atmosphere as well as a superclasses for
constants and a superclass for coordinate notations.
Within each such superclass we would layer
representation categories based on physical objects and
processes, as appropriate. For instance a terrain
superclass might have subclasses for topology,
vegetation, cultural features, etc.

For more limited applications in a single domain such
as Naval weapon system simulation, another approach
may be easier to develop and use. In our continuing
work, we have developed classes for various types of
energy propagation phenomena such as scattering,
specular reflection, dialectric values, and sea surface
characterisations. We use this set of stereotypes
because the environment-related processing in the ISD
Phase 1 federation is almost exclusively associated
with radio frequency and infrared energy propagation
and reflection. (Ref 2)

Regardless of the scope of the class structure, our
experience suggests that classes should always list
attributes, but may or may not list operations.
Operations (descriptors for algorithms or calculations)
are often the determining factor in determining fidelity,
and stereotypes are intended for a range of fidelities.

With the stereotype class structure in place, the next
step is to use the class structure as a baseline, auditing
the baseline against the needs as described in the use
case. The audit proceeds by inspecting the class
structure for consistency and completeness, changing
the class structure as needed to achieve the
environment representation that reflects the scenario
and participants of the use case. The changes might
include changes to the class hierarchy, new classes,
class deletions, and changes to the class attributes.
Most importantly, the class structure may be elaborated
by adding operations (descriptions of calculations) to
the class descriptions. The operations represent
possible effects and impacts calculations, and they play
an important role in determining the level of fidelity of
the environment representation.

There are several common sources of inconsistency in
environment representations, and these sources fall
roughly into three categories. First, there may be
inconsistencies between the representations for
difference environment regimes, (terrain, atmosphere,
oceans, the surf zone, etc.), with respect to length
scales and boundary interfaces. Second, there may be
inconsistencies between the time scale of simulation
events and the time scale of the environment
representation (static environment representations vice
dynamic weather, etc.). Third, there may be
inconsistencies in the representation of environment
effects at different bandwidths throughout the energy
spectrum.

The complete inferred view provides "just enough"
environment representation to satisfy the needs of the
simulation. This means that changes in environment
state result in meaningful changes to the simulation
object behaviors of interest. Naturally, the definition
of "meaningful changes" is often entirely application-
dependent. Thus the key to auditing the inferred
environment view for completeness is to trace
computational sequences back from the simulation
behavioral outputs back through effects and impacts
calculations, right through to environment data. There
may be valid reasons why an object behavior is not at
all sensitive to environment. Often, however, this
insensitivity is due to gaps in the environment data or
calculation capability; the absence of environment
classes, or missing attributes operations within a class.

3.5 Building and Using the Implemented
Environment View

We have found that there is often a difference between
the environment representation inferred by the use case
and the representation that is implemented for the
simulation. The simulation systems engineer,
responsible for balancing Federation implementation
concerns, is often unable to provide all the resources
needed to fully implement the inferred environment
implementation. The system engineer's goal is to
deliver a simulation capability that fulfills application
needs; environment representation investments are
balanced against hardware purchase needs, integration
testing needs, etc. Differences can develop because of
implementation schedule and cost constraints, lack of
suitable data sets, inability to modify proprietary
simulation software, to name just a few reasons.

The implemented environment representation view is
the documentation of the actual environment
representation to be used in the simulation at runtime.
The implemented view is, most often, the final
compromise between the consistent, complete inferred
environment representation and the realities of
implementation budgets, schedules, proprietary
software rights, available data sets, certified software,
etc.

The representation notation used for the implemented
view is the same as for the inferred view: Class
Diagrams and Interaction Diagrams. However, in the
implemented view, we associate components of the
environment data and code with components of the
simulation, if the implementation is to be distributed.

The key differences in approach to developing the
implemented view lie in whether the environment
representation is being newly developed, or whether an
existing representation is being modified for reuse. For
newly developed environment representations the
process moves forward from the inferred view, editing
the implemented view to accommodate the overall
simulation implementation process. For
reused/modified representations, a data/model package
is reverse engineered from data schemas and code into
the object model syntax. Then the reverse engineered
implemented view is compared with the inferred view,
and the implemented view is edited as needed to
approach the inferred view.

The Phase 1 ISD HLA-compliant federation contained
environment data and calculations embedded in each
federate's source code. As a result, as shown in Figure
4, we elected to group the implemented environment

classes under packages representing the individual
federates in the ISD Phase 1 federation.

Its often useful to develop the inferred and
implemented views in parallel, and to compare them
frequently. The emerging difference between the
inferred and implemented views often provides
valuable insight into sources of approximation in the
simulation results. If the simulation system engineer is
uncomfortable with the impact of the approximations,
then there is still time to change the implemented
environment to more fully reflect the inferred
environment representation.

As with use case documentation, it's wise to offer an
alternate description of the implemented view. For a
use case alternative, we described the Context
Diagram. As an alternative to the implemented view,
we recommend the Consistent Environment
Description. The Consistent Environment Description
is a short textual document summarizing the
implemented environment's impact on each simulation
object, and any limitations on the object behavior
validity caused by the scope of the implemented
environment representation.

4. Sharing Environment Concept Models

The ECM is documented in a standards-based notation,
using standards-based tools. As a result,
representations documented in the ECM can be
exported for several purposes. The ECM use case,
inferred view and implemented view, can be exported
to repositories to save as reusable representations, or to
accompany reusable environment data and model sets.
The ECM implemented view can also be used as input
to object model template generators to quickly develop
simulation object models or federation object models.
Finally, the implemented view can be exported to
application generators to generate database schemas or
source code.

At this point the ECM content becomes
implementation-specific, a part of the simulation
software design and production process. Today, the
particular export capabilities depend on which object
oriented design and analysis tools is chosen to
document the ECM. However, the software
development trend is towards interoperable tools that
can be chained to create an end-to-end software
development environment.

If an organization or project already uses a suite of
software engineering tools, it may be a worthwhile
investment to choose a compatible ECM-building tool.

The ECM should be viewed as a living document, and
maintained using the same mechanism as other project-
related analysis, design and implementation
documents. However, the nature of ECM content may
complicate life cycle maintenance. First, the ECM
uses both static and dynamic object notations. Many
existing repositories were originally intended to
manage static database designs, and store only the
static portions of object oriented models. Second, an
ECM may include referenced files, and may also
include information in alternate formats (use case
context diagrams and implemented view consistent
environment descriptions). As a result there is no
simple way of archiving a complete ECM, and no
simple way of globally modifying all ECM content
from a single entry point.

Our present approach to maintain the ECM as a
separate entity, uploading portions of the ECM to
archives and repositories for specific purposes.

5. Reusing the Environment Concept
Model

Every use case is different, in some degree. Even
when the objects and the scenario remain constant, the
participants and analysis objectives will probably
change. The use case view reflects these changes in
the list of actors and non-simulation activities, shown
in the use case diagram. It's important to consider the
impact of different actors and non-simulation activities
on the desired simulation output. As a result, we
strongly advocate reusing legacy environment
representation components… with care.

It's possible to assume the same use case and reuse an
environment representation to achieve a consistent,
authoritative environment. But there is a real risk that
the reused environment representation is no longer
responsive to the needs of the new analysis objectives.
Therefore, don't reuse an environment representation
without first (re)examining its associated use case.
Changes to the use case will suggest changes in the
inferred environment view, and the modification
process adhering to the approach described previously.

Figure 4. ISD Phase 1 Federation Implemented Environment View

However, reusing implemented environments, and
editing the associated implemented environment view,
may be more involved.

6. Acknowledgements

MARVEDS has been sponsored by the Navy Modeling
and Simulation Management Office (N6M) and by the
Naval Sea Systems Command . Project direction and
management is by S.K. Numrich at the Naval
Research Laboratory. The work cited in this paper was
conducted with the support of the Program Executive
Office for Theater Surface Combatants.

7. References

[1] PEO Theater Air Defense M&S Pilot Program
Management Plan.

[2] Chadbourne, Christopher, Clark, Douglas, Neel,
Timothy, "Insuring Consistent Synthetic
Environmental Representation Across an Engineering
Federation - A First User Case", 1998 Fall Simulation
Interoperability Workshop

[2] Fowler, Martin, Scott, Kendall, UML Distilled,
Addison-Wesley, 1997.

[3] Booch, Grady, Rumbaugh, James, Jacobson, Ivar,
The Unified Modeling Language User Guide, Addison-
Wesley, 1999.

Author Biographies

Christopher Chadbourne is President of VisiTech,
Ltd. He supports the MARVEDS Working Group and
is a technical team leader in the development of
environment representation tools. For the past ten years
Mr. Chadbourne has supported the Navy and joint
simulation communities. Mr. Chadbourne has a BS
degree in Engineering from the University of Michigan
and an MBA from George Washington University.

Douglas Clark is a vice president of Analysis &
Technology, Inc has over 25 years experience in
modeling and simulation. He has lead efforts
developing signature data and models to support
simulations, developed design concepts and provided
engineering support to the development of trainer
systems and engineering federations. Currently he is a
member of the MARVEDS Working Group
concentrating on issues associated with the
development and use of synthetic environments and
also supports the Battle Force Tactical Trainer (BFTT)
technical team. Mr. Clark has an MS in electrical
engineering from the University of Connecticut.

.

